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SUMMARY

skin-friction parameters obtained from exact
the laminar compressible-boundary-layer eqmtions

for the infinite cylinder in yaw are presented. The chordwise flow in
the transformed plane is of the Falkner-Skan type. Solutions are given
for chordtise stagnation flow with both a porous and a nonporous wall.
The effect of a linear viscosity-temperature relation is compared with
the effect of the Sutherland viscosity-temperature relation at the stag-
nation line of the cylinder for a Prandtl number of 0.7. The effects of
pressure gradient, Mach nuziber,yaw angle, and wall temperature are inves-
tigated for a linear viscosity-temperature relation and a Prandtl number
of 1.0 with a nonporous wall.

The results indicate that compressibility effects become important
at large Mach numbers and yaw angles, with larger percentage effects on
the skin friction than on the heat transfer. The use of the two different
viscosity relations gives about the same results except when large changes
in temperature occur across the boundary layer, as for a high3y cooled
wall. The present solutions
be required at a given large
dieted from solutions of the
equations.

predict that a larger amount of coolant would
Mach nwber and yaw angle than would be pre-
corresp”ondingincompressible-boundary-layer

INTRODUCTION

The-so-called similar solutions of the l.aminar-bounds.ry-layerequa-
tions are obtained by imposing certain restrictions on the external flow
and the wall temperature and assuming that the dimensionless profiles of
velocity and temperature are functions of a single variable. The gwerning
partial differential equations then reduce to ordinary eqyations, and the
qualitative effect of various parameters on the boundary-layer character-
istics can be investigated with much less computing labor than for the more
general case. The similar solutions are also useful as a check on the
accuracy of approxhate integral methods and as the basic information for
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constructing approximate methods of the piecewise type, such as those of
references 1 to 3. Furthermore, the similar solutions are exact for a
few physicalQ real flows, such as those which occur on flat plates, the
stagnation region of cylinders and bodies of revolution, and wedges in
flows with constant fluid properties.

Similar solutions for constant-property flows are given, for example,
in references 4 and 5, where the effects of pressure gradient on the
velocity profiles and skin friction are considered. Solutions for the
corresponding temperature profiles and heat transfer are given by Squire
and Sibulkin for stagnation-type flows (refs. 6 and 7) and for various
pressure and wall-temperature gradients by Schuh and Levy (refs. 8 and 9).
The effects of transpiration cooling in constant-property flows are given
in reference 10.

In references I-1and I-2the fluid properties were assumed to vary as
powers of the temperature; solutions with transpiration cooling were
included, but the results apply only to low-speed flows. In references 13
and 14 the product pp of density and viscosity was assumed to be constant
in accordance with the perfect-gas law and a linear variation of viscosity
with temperature. l?hesesolutions are not restricted to low-speed flows
when the Prandtl number is 1.0. Several solutions with transpiration
cooling were included in reference 13. The effects of transpiration
cooling on the heat transfer at the stagnation point of cylinders and
bodies of revolution is presented in reference 15 for a constant value

.

of pp and a Prandtl number of 0.7.
—

1?

The boundary layer on infinite cylinders in yaw can also be treated
by the methods of stiilsrity; and, in fact, for constant-property fluids
the chordwise flow is independent of the spanwise flow, which can then be
calculated by using the solutions already available for two-dimensional
cylinders. (See, for example, ref. 16.) When the fluid properties are
allowed to vary, the chordwise flow is no longer independent of the span-
wise flow and the equations for the two components must be solved simul-
taneously. This problem has been considered by Crabtree (ref. 17) and
Moore (ref. 18) for a constant value of PV~ zero heat transfer, and A
Prandtl number of 1.0; solutions are given for small.values of the yaw-
angle parameter X in reference 19. Solutions for finite heat transfer
and small values of X are given in reference 20. In reference 21 solu-
tions are given for the flow at or near the stagnation line wi$h finite
heat transfer and large values of X for Prandtl numbers of 1.0 and 0.7.
Solutions for the case of large suction but small.values of X and a
Prandtl number of 1.0 are given in deference 22.

Fay and Riddel.1(ref. 23) present solutions for the flow of a real
gas, including the effects of dissociation, at a three-dimensional stagn-
ation point. They conclude, for example, that, when the Lewis number is
near 1, a heat-transfer parsmeter in terms of a local Nusselt number and

ti
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Reynolds numiberdepends mainly on the total variation of pp across

9 the boundary layer. For high cooling rates the effect of fluid properties
becomes more important. Thusj for a ratio of wall enthalpy to local
stresm enthalpy of O.@, the heat-transfer parameter is about 65 percent
of the value predicted by reference 15 “fora constant value of PV.

In the present paper the effects of walJ.temperature, Mach nmber,
fluid properties, and transpiration cooling on the heat transfer and skin
friction of yawed infinite cylinders are considered. The external flow
in the transformed plane is required to vary as a power of the chordwise
distance from the leading edge or stagnation line; the injected gas is
the same as the boundary-layer gas, that is, the gas is homogeneous
throughout; and the wall temperature is constant. The density variation
is given by the perfect-gas law, and the specific heat and Prandtl num-
ber are assumed to be constant. Solutions are presented for Prandtl num-
bers of 0.7 and 1.0, for ratios of wall temperature to stagnation temper-
ature from O to 1.0, and for values of the yaw-angle parameter up to 11.0.
For a Prandtl number of 1.0 and a linear-viscosity-temperature relation,
the pressure gradient is varied frcm the infinitely favorable to the value
for chordwise separation. For the flow at the stagnation 13_neof the cyl-
inder, solutions are calculated by using both the Sutherland and the
linear viscosity-temperature relations. Numerical examples are given to
illustrate the effect of yaw angle and viscosity relation on the quantity
of coolant required to maintain a given wall temperature.

SYMBOIS

A,B,K

a

--
a,b

c

CP

f

H

arbitrary constants

speed of sound

constants in interpolation formula for taw (eq. (48))

constant in Fallmer-Skan velocity distribution (eq. (la))

specific heat at constant pressure

chordwise velocity function; related to stre~ ~ction by
equation (All.)

spanwise velocity profile functionj v/ve

stagnation enthalpy, U+v~T+~
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u,w

U,v,w

heat-transfer-coefficientparameter (eq. (40))

static enthalpy

thermal conductivity

reference length

Mach number based on resultant or total component of flow

exponent in Falkner-Skan velocity distribution (eq. (la))

local Nusselt number, bx/~

I
Prandtl number, CPIJk

pressure

heat-transfer rate per unit area

constant in perfect-gas law (eq. (A3))

f+,p+
local Reynolds number, ~

w

recovery factor (eq. (43))

Sutherland constant (eq. (A2))

temperature, %

chordwise and normal velocities, respectively, in transformed
plane (eq. (Bl))

chordwise, spanwise, and normal velocities, respectively, in
physical plane

—
.

b

.
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% resultant velocity ccmponent, (U2 + &)’/p

v
x,z transformed coordinates (eq. (A7))

X,y,z chordwise, spanwise, and normal boundary-layer coordinates,
respectively, in physical plane

---
u,p,7 constants in interpolation fo~ for G (eq. (47))

a acute angle in chordwise plane between line tangent to surface
and free-stresm

Y ratio of specific

direction

heats

t’
t6 ~ due

= ——
2 pvwdx

t6-7
()

-1>
7 at

7 similarity variable (eq..(A1O))

e. enthalpy profile function,

6*,5*,~,E,@,f3* integral-thickness
(eqs. (B13))

A mgle of yaw (complement of

H-%
He-%

~ters in transformed plane

acute angle between free-stream
flow direction and cylinder axis)

A yaw-angle parameter; ratio of total stagnation temperature to
stagnation temperature

IJ viscosity coefficient

v coefficient of kinematic

of flow compon=nt normal to cylinder

viscosity, lJ/P

P mass density

T shear stress

$ _ PP

%#w

-—
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‘4 stream function

0.) coolant mass flow per unit

a dimensionless coolant-flow

Subscripts:

e local

t total

w wall

flow outside boundary

stagnation conditions

NACA TN 4345

.

sxea, pwww

s external flow at stagnation

m ahead of bow shock

aw adiabatic wall

c coolant

layer (unless otherwise noted)

in free stream

line of cylinder

tr -transformedsimilarity plane

P physical plane

St static

A prime denotes differentiation

EQUATIONS AND CONDITIONS

●

with respect to ~.

FOR SIMILAR SOLUTIONS

The general boundary-layer equations for the infinite cyllnder in
yaw reduce to ordinary differential equations when the dimensionless
velocity and enthalpy profiles are assumed to be fumctions of a similarity
variable and when certain restrictions are imposed on the external flow
conditions and the
in the transformed
type:

gas properties. (See appe%ix A.) we external flow ._
coordinate system is restricted to the Falkner-Skan*

Ue = CP (la)
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where C and m are constants. In terms of the physical flow this

3 relation may be expressed as

(lb)

frcm the definitions of Ue and X. The local speed of sound ae may
be written as

) o

(2)

.

-%

from the definition of ts

in the external flow. The

ber and yaw angle as given

ts

and the use of the adiabatic-energy equation

parameter t~ depends on the stream l&ch num-

by the expression

-11++ M=2COS2A
=

21+7-lM
2=

(3)

solutions can be classified into two generalThe so-called stiilar
categories depending upon the additional restrictions used. In ~he first
of these categories (subsequently referred to as class I flows), the
chordwise velocity Ue is zero or negligible in comparison with the

speed of sound. Such flows exist at or in the vicinity of a stagnation
point or line and on a cylinder at very large yaw angles. The second
category (class II flows) is obtained when the value of ~ is arbitrary.

Further restrictions and assumptions
gation, apply to both categories are

(1)

(2)

(3)

(4)

Prandtl boundary-layer equations
geneous gas

Perfect-gas law

which, in the present investi-

for the steady flow of a hmo-

Constant specific heat and Prandtl number

Constant wall temperature

—-
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Chss I F1OWS

The final ordinary differential equations for class I flows subject
v

to the restrictions and assumptions Jisted previously are as follows
(see appendix A for derivation):

{ ‘-*&)+%).’+%]}(4)(@f”)’ +f”f =p (f’)

(fig’)’ +fg’ =() (5)

(@’)’ + ‘prfe’ =(’ - ‘l?r)~~(g’)’]’
(6)

where the prime denotes differentiationwith respect to the similarity
variable q. The boundary conditions on equations (4) to (6) are, at
~=Oj

where f = O for a nonporous wall and

(7) .

*-

f’=e=g=o (8)

As q+~,

f’=e=g=l (9)

For zero aerodynamic heat transfer the additional condition required to
determine the wall temperature is that 0~ = O.

The general expression for the viscosi~ function @ is

(lo)

which, after introduction of the Sutherland viscosity relation, beccmes

@ h+ +[’+(ii-‘)’-++-t+:’”=
~+ S+(z-~)e-(1-tS)g2

(lOa) .

●

—.
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If the vi.scos~ty

% to the relation

equation (10) is

9

is assumed to vary linearly with temperature according

P =
t

T

reduced to

@=l (lob)

The functions f’, g, and 0 are the dimensionless chordwise velocity,
spanwise velocity, and enthalpy profiles, respectively. The normal
velocity at the wall Ww is determined from eq.tion (7), where fw

must be a constant.

Class II FkWS

For class II flows the chordwise velocity may have any value so long
as equation (lb) is satisfied and the additional restrictions of Npr = 1.0

and #“= 1.0 are imposed. (See appendix A.) The equations with these
conditions are

g“ + fg’ = o (1’)

e“ +fe’ =0 (13)

For equtions (U.) to (13) the boundary conditions are, at q = 0,

and, at q +@,

f’=e=g=o

f’=e=g=l

(14)

(15)

(16)

.

*

--



10 NACA TN 4345
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Inasmuch as the spanwise velocity profile g is exactly the same as the
enthalpy profile 9, equations (11) to (13) reduce to a fifth-order sys- W
tern. The normal velocity at the wall WV is

.=-+$[++$+1’2
from equation (14), where again

GENERAL EXPRESSIONS FOR

fw

HEAT

-1

must be constant.

TRANSFER AND SKIN FRICTION

Transformation Relations Between z and q

(17)

Since expressions for the heat transfer and skin friction involve
derivatives normal to the wall, it is useful to consider the trans-
formation from the physical xz-plane to the similarity plane Xq. From
appendix A the normal derivative is

Differentiation of equation (lb) written in the form

r 011 /2

1
c

‘e (7]=ct/+- at

and the use of the Stewartson transformation

P

yield

(18)

—

—
.

—
(19)

Substituting equation (19) into equation (18) and evaluating at the wall.
then give

()aZw’
[ ()

ts
U&’t#=-——

2 %

-.
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or for brevity

*

(20)

where ~ is a function of x only. Similarity, it canbe shown that
for a given x-station the relation between

1 rVz =~ t

z and ~ is

dq (a)

where the temperature ratio t is, in general,

t.(l-~)e .(. -t*)g’+~-’; l*2()2)2--() (22)

Local Heat Transfer

The heat-transfer rate per unit

and Skin Friction

area at the W is

% = %&w
which, from the definitions of H and G, may be written as

Then from equation (20)

% = %(% - %)fie; (23)

Combining equations (23) and (14) yields the relation

(23a)

which shows that for a given simi@r flow ~ varies with x directly

as the coolant mass flow since 8; and“ fw are independent of x.

— —-
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From equation (23) the expression for the local heat-transfer

/r‘Nu ‘e ‘s

1/2
1

4345

.

-param-

Equation (24) may also be written in a form that does not include a
velocity-gradient term by using equation (18) directly in the expression
for q.. preceding equation (23). After the definitions of @ and X
are i~%roduced, the result is

men x ao, as at a stagnation ~ine~ equation (24a) reduces) in the l~it~
to *

(24b) a

A heat-transfer parameter”which for given stream conditions is
proportional to the heat-transfer coefficient h may be written as

“=1/2

(25)

from equation (24) and the assump-tionthat ~lb = ~lpm.

The expressions for local chordwise and spanwise skin friction may
be written as

(26)

.—-

(27)



MCA TN 4345 13-

.

The total component of the local skin friction in the direction of the

T free stresm is then

‘total = pw~(f~ cm a COSA + < sin A
)

(28)

where a is the angle in the chordwise plariebetween a line tangent to
the surface and the free-stream direction.

Simplified Heat Balance

In the absence of lateral heat conduction within the porous wall
and heat loss by radiation, all the heat transferred to the wall by the
airstream must be absorbed by the coolant. If the coolant flow through
the porous wall is assumed nornal to the wall throughout and the aero-
dynamic heat transfer is given by equation (23), the resulting heat
balance is

%(Tt- %)@; =Pww”cp(TW- Tc) (29)

where T is the initial temperature of the coolant before it enters
the poro~s wall. Rearranging equation (29) and introducing fw from

eqution (14) and ae from equation (2) give a rela,tionbetween the

pertinent temperatures and the parsneters e; and fw involved in the

similar solutions. This relation is

which, if any two of the three quantities ~, Tc, or fw are known,

determines the remaining unknown value since e; depends only on ~

and fw for given stream conditions and yaw angle. Typical.problems
utilizing equation (30) would be to find the wall temperature from given
coolant temperature and mass flow or to find the coolant flow required
to maintain a given wall temperature. The latter problem is considered
in some detail in the section entitled “Results and Discussion.!’

If radiation and conduction are included, a more general heat bal-
ance, such as that given in references 1 and 15, must be used.

—
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BOUNDARY-IAYER-THICKNESSPARMETERS

n

Transformed Plane

Zn various applications of the present results it is convenient to
have available certain boundary-layer-thicknessparameters which are
obtained from integration of the velocity or enthalpy profiles over the
boundary-layer thickness. These parameters are defined in the X.2-plane
since transformation to this plane results in considerable simplification
of any compressible-boundary-kyer calculation. The particular parameters
included in the tabulated results of the present report are those that
appear in the integral boundary-layer equations which =e derived in
appendix B.

Transformation from the general Stewartson variable Z to the
similarity variable q (see appendix A) reqgires that any thickness
parameter in the X2-plane can be obtained by multiplying the corresponding
parameter in the similarity plane by the quantity

Thus, for example,
defined as

the displacement thickness 5* in the X2-plane is

or, after transformation to the similarity variable,

Performing the indicated integration then yields the following
for the displacement thickness” ~t~ in the similarity plane:

expression

(31) ‘-

Similarly, the momentum thickness is defined as
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which, after integration of the last term by parts
ff“ from equation (4), becomes

and introduction of

[

11

t)*= lim —
tr

7&ml~pfw-fw-

p(fw+ q-f e) - P(* -1, JO%(l - g’)dq -

(32)

A spanwise parameter Gtr is defined as

which is the sum of the spanwise displacement

The thermal thickness is defined as

and momentum thicknesses.

E)* = Mm
tr J

‘(l - e)dq (*)
q,+ m o

The final form of the momentum thickness is then obtained by sub-
stituting equations (31), (33), and (34) into equation (32), ~ich becomes

The remaining parameters appearing in the integral equtions (appendix B)
may be considered as convection thicknesses when the analogy between g
and G

(‘or ‘Pr )
= 1 is considered. The spanwise convection thiclmess

or “mixed” momentum thickness is defined as

—
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.

I
7=

‘tr = lim f’(1 - g)d~ =
qe+m o ;:m(fe-fw- J-’&f.,)

Y

Integrating the last term by parts and using eqution (5) result in

Etr = g; - fw (36)

Likewise, the enthalpy convection thiclmess is

from integration by parts and equation (6). Equations”, (36), and
(37) show that e~r, Etr, and ~r can be written in terms of the —

derivatives of the profiles
thiclmesses 5;!, Gtr, and

at the wall and the other three integral

e;r.

Physical Plane .

The momentum and displacement thicknesses in the physical plane can
be expressed in terms of the thickness parameters in the similarity plane. r-”

The chordwise mamentum thickness in the physical plane is defined as

e* s lim
P Ze+ =

which, from equation (21) and the perfect-gas law, may be written

since
&’f’”

Then, from the definition of et*r,

* te *

‘P=—
e

tw~ ‘r

(38)
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According to reference 24, the physical displacement thickness on
a yawed infinite cylinder is not affected by the spanwise mass-flow
defect. Hence, the displacement thickness is defined in the usual way
as

5-;=

which, from equation (21),

law, may be written, after

&’ L’~-&)dz
*

the defi~tion of atr} and the perfect-gas

some rearranging, as

Substituting equation (22) for t and using equation (32) and the
*

‘efinition ‘f ‘tr
then yield

[(ts ~.~%2
f=-

) 1I+p*f:-fw
——-—e +

twti 2ts %2 p ‘r P

camJTINGPROcEDuRE

(39)

More than 200 solutions to equations (4) to (6) and (H) to (13)
have been obtained by means of the IBM type 704 electronic data pro-
cessing machine. The numerical integration procedure of reference ~
was used, and the procedure described in reference 21 for obtaining con-
vergence to the correct boundary conditions was included in the automatic
programing for the machine. A step size of 0.2 in ~ was used for most
of the solutions; however, a step size of 0.1 was used in a few solutions
which are included for comparison in the tabulated results. The accuracy
of the present solutions, except for ~> 1.0 and fw< -0.5, is believed

to be as good as or better than the accuracy of the solutions in refer-
ence 21. The boundary conditions at large values of q on f’, g,
and e were satisfied to within 0.0001. The solutions were carried out
to sufficiently large values of q that the absolute values of the
derivatitiesof the functions f“, g’, and 0’ were ~0.0~. For
negative values of ~ the absolute values of the derivatives at large
values of ~ were ~.00005. In all solutions it was found that these
requirements could be satisfied for q S 8. For negative values of ~
there is a problem of uniqueness (see, for example, refs. 4 and 14) which
is discussed in rektion to the present solutions in appendix C.
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RESULTS AND DISCUSSION

constitute the principal results are presented in tables I to lV for
most of the solutions in the present investigation. All heat-transfer
and skin-friction coefficients or parameters as well as most of the
boundary-layer-thickness parameters can be derived from these tabulated
values as described elsewhere in this report. The solutions included in
each table are summarized as follows:

—.. — — —- .——— —..—

@ k

1.0 -----

+1.o 0“2
0.02

0.00’

+1.o 0.02

0.0625

0.2

0.005
+1.0

0.0625

% ! ?! I!Cabl.e

I

NW
—

1.0 -====+0’’’’’0’’”5o,-0.5,-1.0I..o
0..7
—

0.7
0,-0.5,-1.0

0.05,0.5,1.0,t= I 1.0, 1.6,3.0>
6.5,11.O III 1.0

),-0.5,-0.75,-1.

4.
0.o15,0.030,0.070,
0.300,0.150,O.XJO,

0.250,0.300

0.06,0.20,0.50 1.0

O.Mm, 0.627

O.m,0.50

III(a)

III(b)

0.5 0.7

—

0.7

0

0.015,0.050,0.loo,
0.200,O.m 1.0

.
0.o1’,O.mo,
O.mo> taw I 3.0 Io1.0

0.o15,oi50,0.200, 11.o
aw

0.18~,0.625 I 1.0
I

1.0 ------ 0 0,0.5,1.0 LO, 1.6,3.0,6.50.2,0.5,
1.5,2.0IV(a)

IV(b)

1.0

1.01------] o I 0,0.5,1.0 ILO, L6,3.0,’.5I1.0<o

Velocity and Temperature Profiles at the Stagnation Line

Typical profiles of the chordwise and spanwise velocity ratios and
the stagnation-enthalpy difference ratios are show in figure 1. These
results–are for stagnation-line flow (p = 1.0),

and ~ = 0.5. Note that a given change in the

@=l.0, Npr =0.7,

transpiration-cooling

●
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parameter fw

and l(c)) than

has a larger effect on the

on the f‘ profiles (fig.

g and e profiles

l(a)) and that these

(figs. l(b) .

effects
tend to diminish as X is ‘ticreased. Inspection of tables I and 11 shows
that the same trends are present in the derivatives of the profiles at the
wall. Comparison of figures l(b) and l(c) shows that the g and 0 pro-
files are nearly identical for ‘Pr = o.~. According to previous discus-

sion these profiles are identical when ‘Pr = 1.0.

The temperature profile at the stagnation Une (x = O) depends only
on the spanwise profile g and the enthalpy profile El as given by equa-
tion (22). The resulting variations in the ratio of local static tempera-
ture to total stagnation temperature are shown in figure 2 for
A= 1.6 and 6.5 and for ~ =0, 0.5, and taw, and fw = O, -0.5, and -1.0.

This figure illustrates the large changes in temperature distribution that
occur as the yaw angle is increased. The reduction in heat-tmnsfer rate
and recovery temperature with increasing coobnt flow are also evident.
In regard to the possibility of dissociation or other real-gas effects, it
is of interest to note that for large cooling rates (small values of ~)

the maximum temperatures in the bou&ry layer are much lower at large
values of the yaw parameter than at smalJ values of the parameter.

Heat-Transfer Coefficients and Recovery Factors

in the Stagnation Region

Effect of yaw parameter and transpiration coolinK.- Equation (25)
shows that for given stream conditions, wa~ temperature, and yaw angle
the heat-transfer coefficient depends only on the parameter ~, which 1s
defined as

(40)

In figure 3(a), ~ is plotted against A for Prandtl numbers of 1.0
and 0.7 and for fw = 0, -0.5, and -1.0. The figure shows that the

parameter ~ (and hence also the heat-transfer coefficient) is reduced
considerably by increasing the magnitude of the transpiration-cooling
parameter fw, with the largest reductions being obtained for smll values
of A and for Npr = 1.0. A change in the value of the transpiration-

cooling parameter,
mass flow and wall
ficient form as

however, would generally imply a
temperature. Equation (23a) can

Cp
h =C=-—

‘Pr fw

change in the coolant
be written in coef-

(41)
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where m = pwww. Thus, for a finite normal velocity at the wall, the

heat-transfer coefficient is determined solely by the coolant mass flow
and the

cOolant

parameters fv and fib The parameter fw is related to the

mass flow by means of equation (7), which may be written as

(42)

Then since the quantity ~~ is nearly constant for relatively large

changes in wall temperature
(
for example, a change in ~ of 400° R

causes only a 7-percent change in da)> equation (42) indicates that

an increase in coolant mass flow m would cause a corresponding incre~se
in the magnitude of fw, and hence, from figure 3(a), a reduction in h.

It then follows from equation (41), as would be expected, that increasing
w decreases the heat-transfer coefficient ~. This effect is shown
dire@ly, in figure 3(b) where the ratio of h with transpiration cooling
to h for a nonporous wall is plotted against X. The ratio of the ~eat-
transfer coefficients is proportional to the ratio of the values of h
for a constant value of pwpv. Figure 3(b) is not to be interpreted as .

indicating an increase in heat-transfer coefficient with yaw angle at a
constant value of u, since an increase in yaw angle causes a large
decrease in the local density Pw and velocity gradient d~/dx. Con-

1

sequently, for given stream conditions and a constant value of m, an
increase in yaw angle decreases the heat-transfer coefficient.

The effect of Prandtl number on the ~eat-transfer coefficie~t is
shown in figure 3(c) where the ratio of h for N= = 0.7 to h for

‘Pr = 1.0 is plotted against A. This figure shows that the approxi.umte

expression

‘0.7
()

0.4
~“ ‘Pr
‘1.0

suggested in reference 21 is adequate for a nonporous wall but is in con-
siderable error for transpiration cooling.

The recovery factor or recovery temperature must be known before
heat-transfer rates can be calculated from heat-transfer coefficients.
The recovery factor r defined at the stagnation line as

—
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Taw - T~
r
‘Tt-T~

(43)

is plotted against the coolant parameter fw in figure 4. The variation

of the recwery factor for a fht @ate from reference 1 is also shown for
comparison. Increasing the coolant flow decreases the recovery factor on
both the yawed cylinder and the flat plate. On the yawed cylinder, larger
decreases in the recovery factor are obtained for small values of A than
for large values of A. The recovery factor on the flat plate is, of
course, independent of the yaw parameter.

Effect of viscosity assumption.- The ratio of the heat-transfer parem-

eter ~ from the solutions calcukted by using the Sutherland viscosi~
relation to the corresponding value of E for” ~= 1.0 is plotted
against A in figure 5 for N& = 0.7 and ~ = 1.0. Three parameters

must be considered: the transpiration-cooling parsmeter fw, the ratio

of wall.temperature to stagnation temperature ~, and the ratio of the

Sutherland constant to stagnation temperature s = s/q. If the value

of S is taken as 200° R, then s = 0.2 corresponds to ordinary wind-
tunnel conditions with Tt = 1,000° R or to flight conditions with

.
T= = 400° R and Mm = 3, while s = 0.02 corresponds to Tt = 10,000° R

or to flight conditions at ~ S=1.1.O.
$

All results from the solutions for tw = 0.5 fall within the shaded

band in the center of figure 5. For h> 3 and ~a 0.5, the linear

viscosity relation gives practically the seineresults as the more accu-
rate Sutherland relation. For A< 3 and ~~ 0.5 the linear vis-

cosity relation results in heat-transfer coefficients that are as much
as 15 percent larger than those obtained with the Sutherland relation.
From a comparison of the values of ~ listed in tables I and II, the
largest deviations are seen to occur tien s = 0.02, which for ~= 0.5

is beyond the range of practical wall.temperatures. For s = 0.2
and ~ = 0.5 the maximum differences resulting from the use of the two

viscosity relations is about 10 percent.

For ~ = 0.05, a value corresponding to large aeroxic heat-

transfer rates, the viscosity relation has a large effect for both values
of s. When s = 0.2 with ~ = 0.05, the use of the linear viscosity

relation results in heat-transfer coefficients that are from 10 to 50 per-
cent smaller, with the differences increasing as the transpiration-cooling
rates are increased. For s = 0.02 and tw = O.@ the Hnear relation

has the opposite effect in that the heat-transfer coefficients are from
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ZO to 80 percent larger, with the largest deviations occurring again at
the largest values of fv. At some intermediate value of s the vis-

cosity assumption might be expected to have little effect even for the
lsrge heating rates. For all conditions except s = 0.2, tw = 0.0,

and fw = O and -0.5 the effects of the viscosity assumption tend to

become smhller as the yaw-angle parameter A’ is increased.

The effect of viscosity assumption on the variation
coefficient with yaw angle or
figure 5-by noting that

yaw-angle-parametermay be

‘/hA. _~= ‘~=1
(h/hA*)@=,(h/~=l)A=O t’/~=l)X=o

since from equation (25), h
conditions, wall temperature,

is proportional to G, for

of heat-transfer
obtained from

given stream
and yaw angle. ‘lWtsrelation and fimme 5

then indic;te that (&xcept for s ~.O.2 ‘and fw = -1.0) when the –

Sutherland viscosity relation is used the predicted decrease in heat-
transfer coefficient with yaw angle is somewhat smalJer than when the
linear viscosity relatioriis used.

The ratio of recovery factor r from the solutions computed by
using Sutherlandts rehtion to r for $ = 1.0 is plotted against h
in figure 6. This ratio is found to be essentially independent of the
transpiration cooling inasmuch as all results axe within the narrow
bands shown in the figure. The viscosity relation has at most a 2-percent
effect, which depends only on the temperature level (that is, on Tt) and
is a maximum for s = 0.02 and for large values of h.

.

u

Real-gas effects.- The assumptions of constant specific heat and
density variation according to the perfect-gas law would be expected to
limit the application of the present results to relatively low temperature
levels where real-gas effects and, in particular, dissociation effects are
not important. An indication of the limits of applicability of the present
solutions may be obtained by comparison with the real-gas solutions of Fay
and RiddelJ (ref. 23). I

—

Since the solutions presented in reference 23 are for the stagnation
point of a body of revolution, any results from the present calculations
must first be transformed to the corresponding axisymnetric configuration
before a valid comparison can be made.

At the stagnation point on a body of revolution, Taw = Tt, and from

the Mangler transformation the heat-transfer parameter ‘Nu/& ‘s .
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6 t~s the Correspond@ x--ter i. two-dimensional flow with the
velocity-gradient parameter ~ = O.~. The heat-transfer parameter at
the stagnation point on a body of revolution is then obtained from equa-
tion (24b) as

(-)‘Nu

F
= ‘@;j2-_nsiO=l .

e 5-dimensional

where e: is taken from the solutions for the unyawed cyldnder (A = 1)

with j3=0.>. The principal results of these solutions are given in
table III(a), and the resulting values of the heat-transfer parsmeter for
the stagnation point on a body of revolution are plotted in figure 7

PgPs
Also shown in figure 7 for comparison is the

-inst ‘he ‘atio ~“

correlation given by Fay and Ridden (ref. 23) for their real-gas solu-
tions of the equilibrium boundary layer with a Lewis number of 1. In
reference 23, the Sutherland viscosity rektion was used and the Prandtl
number was assumed to be constant at 0.71. Since the effects of diffusion
disappear from the differential equations for a Lewis number of 1.0 (see
ref. 23), the only differences between the present solutions and those of
reference 23 would be caused by the different assumptions for the varia-
tion of density and specific heat. The close agreement between the
results of the present solutions and those of reference .23,as shown in
figure 7, therefore indicates that the heat transfer at a stagnation
point is not sensitive to the effects of dissociation on density and
specific heat within the boundary layer. For equilibrium dissociation
and a Lewis number of 1 the heat-transfer rate at a three-dimensional
stagnation point can then be calculated from the eqyation (ref. 23)

(44)

where all quantities would be evaluated for the real-gas conditions

except ‘Nu/6 e, which may be taken from the appropriate solution of the

boundary-la~r equations for a perfect gas with a constant value of ~

and Sutherland viscosity law. The appropriate perfect-gas solution, “
according to the correlation of figure 7, would be the one for which the
total variation of PV across the boundary layer is the same as in the
required real-gas conditions.

Whether this procedure can be extended to the stagnation line of a
yawed cylinder is not Imown since the corresponding real-gas solutions
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for this case are not yet available. Such an extension would appear
reasonable, however, if the perfect-gas solutions for the yawed cylinder
could be correlated in a form similar to the results for a three-

#

dimensional stagnation point. In order to investigate this possibility}
several additional solutions for the yawed cylinder (~ = 1) were obtained
for-the range of conditions used in the solutions for ~ = 0.5. These
results are presented in table III(b), and the heat-transfer parameter is
plotted in figure 7. For smdd. values of s the heat-transfer parameter
for j3= land A = 1 to 11 is correlated within about 4 percent by the
expression

(45)

The values that are not correlated by equation (45), that is, the values
for A = 6.5 and 11 with s = 0.2, are not representative of’flight con-
ditions since such values occur at large Mach numbers and large yaw angles
but with Tt s 1,000° R. By analogy with the results for a three-

dimensional stagnation point, it may be assumed that the heat transfer at
the stagnation line of a yawed cylinder in a real-gas flow (with equi-
librium dissociation and a Lewis nuniberof 1) can be calculated from
equations (44) and (45) with He replaced by the adiabatic wall

enthalpy Eaw. From eq-tfon (43), the value of ~w would be

‘=f=‘h - ‘s)+‘s
where, from the adiabatic-energy eqmtionj is

is =He-~ve2

and from figures 4 and 6 the recovery factor is

rr - ‘Pr

is defined as

approximately

The effect of the viscosity relation at a three-dimensional stag-
nation point can be obtained from figure 7 by comparison of the results

PSI-%— = 1 with the present solutions. The use ofof reference 15 for p~w

the Sutherland viscosity relation for the range of ~ and s in the

present solutions predicts smaller values of the heat-transfer parameter
than those given by reference 15 for a linear viscosity relation. The .

.
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maximumeffect is found again for small values

example, with ~ = O.01~ and s = 0.005 the

25

of tw and s; for

heat-transfer parsmeter

is about 50 percent of the value given by reference 15.

Variation of Coolant Flow and Wall Temperature With Yaw

Angle at the Stagnation Line of a Cylinder

Interpolation formulas for E.- The problem of calculating the waU
temperature from given stream conditions, coolant temperature, and coolant
mass flow may be solved by means of equations (30) and (42) and graphical

interpolation for ~ and taw. The general procedure would be to assume

a wall temperature and calculate a first approximation for fw fram eqm-

tion (42). This value of fw, together with the assumed wall temperature

and stresm conditions, is used to determine ~ and taw from interpola-
tion in figures s(a) and 4. The corresponding value of 0~ is then used

in equation (30), which is solved for ~. Only one or two iterations

would normally be required because the qyautity ~1~ is such a weak
function of ~.

A problem that is perhaps of more interest is to determine the
quantity of cooht required to maintain a given wall temperature. Since
e; is a function of fw, equation (30) has to be solved by a trial-and-

error process for fw after which the corresponding coolant mass flow is

determined from equation (42). This trial-and-error process, however,
would be tedious and inaccurate since interpolation for 0~ as a function

of ~, X, and fw would general.lybe required. The limlted mmiber of
solutions available, as well as the behavior of 0~ for ~ +Taw, makes

such an interpolation impractical. On the other hand, the function ~
is in the form of a coefficient and hence remains finite for all values
of ~. Thus, in or% to facilitate interpolation, equation (x) is

written in terms of h as

and ~ is assumed to have the form

(46)

ii= ( )( )(%twp + Eotw+ 70 fw2 + ~tw2 + Eltw + 71 fw + a2tw2 + F2tw + 72
)

(47)
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where &, PI and ~ are constants for any

or d. In general, nine exact solutions at
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.

given set of A, Npr, and s

a fixed value of A would be ●

required to-evaluate the nine constants in equation (47). For Npr = 1.0,

the required nine solutions are available, but for N= # 1.0 (see

tables I to III), only six solutions are available for evaluating the con-
stants since the Uniting value of E for ~ = Tav apparently cannot be

calculated from the zero-heat-transfer solutions. However, for Npr + 1.0,

the ssme form of equation (47) was retainedby assuming that at tw = taw

(%)Npr+l;(*)Npr=lo .—
● .

The resulting values for the constants in equation (47) for both Npr # 1.0

and Iipr= 1.0 are given in table V. For Npr ~ 1.0 the recovery tem-

perature taw is assumed to be linear in fw (for

since frmn figures 4 and 6, r“ ,islinear in fw to

cent. Hence, for

equation

The constants ~
tions (46), (47),

the application of equation (G),

t au =E+fifw

and ~ are also listed in
and (h8) gives a quadratic

N= = 1.0, taw = 1.0)
within about 0.25 per-

taw is given by the

.

(48)
.

table V. Combining equa-
equation in fw for -

Npr = 1.0, and for Npr # 1.0 there is obtained a cubic eqpation which

can be easily solved for fw by standard graphical methods. The inter-

polation formuhs (47) and (W) are also convenient in the first type of
problem in which the wall temperature is calculated from given coolant
mass flow.

~ical examples.- Equtions (46), (47), and (h8)
calculate the coolant mass flow required to maintain a
perature @ the following three.exsmples:

have been used to
constant wall tem-

E=w2e I ‘tl%lTclM@
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Examples 1 and 2 represent flight and wind-tunnel conditions, respec-
tively, at ~ s 10. _le 3 represents flight conditions at KS 7.

- The results are shown in figure 8(a) where the parameter (from eq. (42))

which is directly proportional to the cwlant tiss flow, is plotted
against yaw angle for @ = 1.0 with ~r = 1.0 and 0.7. -les 1

and 2 have also been calculated for @ # 1.0 with N& = 0.7 and

s = 0.02. The values used for the velocity-gradient parameter
()
1%
GF

were taken frcqnreference 21 for a circular cylinder.
.

Figure 8(a) shows that the coolant Mss flow required to maintain a
given temperature decreases with increasing yaw angle, as would be
expected from previous discussion. At small yaw angles considerably more
coolant is required for ‘Pr = 0.7 than for Npr = 1.0; however, the
effect of Prandtl nuniberis not so large for large yaw angles. The
curves calculated for exsmples 1 and 2 with s = 0.02 indicate that the
use of the Sutherland viscosity relation predicts that less coolant is
required than when the linear viscosity rektion is used. The variation
with yaw angle is about the same for both viscosity relations. Note that
in example 1 the curve for @ ~ 1.0, Npr = 0.7 is almost the same as

the curve for # = 1.0, N- = 1.0.

In figure 8(b) the corresponding variation of fw with A is shown

for these exsmples. This variation is essentially an effect of compressi-
bility in the boundary layer since for an incompressible boundary layer fw
would be independent of yaw angle. The present solutions predict, there-
fore, that at large Mach nunibersand yaw angles the coolant requirements
would be some .50percent Mger than for an incompressible boundary layer
with the same wall temperature and external flow conditions.

Effect of Pressure Gradient and Yaw-Angle Parameter on

Skin Friction and Heat Transfer

The effects of the pressure-gradientparameter ~ and the yaw-angle
parameter X on the heat-transfer and skin-friction parameters forthree
different ratios of walJ temperature to stream temperature are shown in
figures 9 and 10. These solutions are for the conditions of @ = 1.0,

‘Pr = 1.0, and fw = O. The heat-transfer and skin-friction parameters,
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as well as other pertinent data from these solutions, are also given in
table IV. .

Figure 9 indicates that the effects of pressure gradient on t~e heat-
transfer parameter e; or the spanwise skin-friction parameter ~ (for

‘Pr = 1.0, e;= ~) become larger as the wall temperature and yaw param-

eter are increased. For negative or favorable pressure gradients (posi-
tive values of p) the values of 0~ and ~ are increased as the yaw

parameter A and the temperature ratio ~ are increased. For adverse

pressure gradients, corresponding to negative values of f3,the values of

0; or & decrease considerably with increasing X or ~. For zero

pressure gradient, e; or ~ is independent of both A and tv. The

effect of these changes on the actual heat transfer or skin friction
would have to be calculated from equations (23) or (27) for any given
of flow conditions and wall temperature.

The chordwise skin-friction parameter f; is plotted against ~

set

for three wall-temperature ratios and four values of 1 in figure 10.
The trends shown in figure 10 are the same as those just discussed for

e; or ~; however, the percentage variations in f; are much larger

than in the other Parameters. These large variations are particularly
noticeable for large values of A and ~. The local skin friction

must again be calculated for any particular case from the appropriate
equations (eq. (26) or (28)).

The value of the pressure-gradient parameter ~ required for

f“ = O, implying separation of the chordwise flow, is plotted against

Aw In figure 11. This figure indicates that decreasing the temperature
would delay separation, while increasing the yaw angle (at a sufficiently
large stream Mach number) would move separation forward.

The ratio of the chordwise skin-friction parsmeter to the spanwise

skin-friction parameter
f

f: ~ is indicative of the degree of secondary

flow in the boundary layer, as discussed in reference 21. The values of
these skin-friction parameters listed in table IV show that the

I
ratio f; ~ is a maximum for ~ = 2.0, unity for a flat plate (~ = O)

where there is no secondary flow, and zero for chordwise separation
where the “surface” streamline is exactly in the spanwise direction.

The problem of uniqueness for the solutions with negative ~ is
discussed in appendix C. The particular solutions presented in table IV
were obtained by application of the convergence procedure of reference 21

m
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at ~ = 8. The tabulated solutions also satisfy the boundary conditions
on ft andeatq = 8 to within O.WOOl with the absolute values of
f“ and 0’ S 0.00C05. It was found that f‘ S 1.00W0 throughout the
boundary layer when these conditions were satisfied and that application
of the convergence procedure of reference 21 to values of q > 8 resulted
in no appreciable changes in f: or e;.

CONCLUDING REMARKS

General equations for the heat transfer and skin friction in the
lsminar cmnpressible boundary layer on infinite cylinders in yaw are
presented for the case in which the velocity and enthalpy profiles are
functions of a similarity vartable. By means of numerical solutions of
the boundary-layer eqyations, the effects of transpiration cooling,
Prandtl number, and viscosity relation were obtained for stagnation-line
flow. The effect of chordwise pressure gradient was investigated for a
nonporous WSJL, a Prandtl number of 1.0, and a Mnear viscosity-temperature
relation.

Transpiration cooling reduces the skin-friction and heat-transfer
coefficients by large amounts, with the largest percentage reductions
occurring at sma~ yaw angles and for a Prandtl number of 1.0. The effect
of Prandtl number N- on”the heat-transfer coefficient is given approxi-

mately by (Npr)0.4 for a nonpor~s w; however, for a porous wall this

expression is in considerable error.

Because of an overall reduction in heat-transfer coefficient with
yaw angle A, the quantity of coolant required to maintain a given wall
temperature decreases with increasing A; however, this decrease is not
so large as that which would be predicted frcm solutions of the
incompressible-boundary-layereq’tions.

Comparison of solutions computed by using the Sutherland viscosity-
temperature relation with solutions computed by using the linear viscosity-
temperature relation indicates agreement in heat-transfer coefficients to
within about 10 percent when the ratio of wall temperature to stagnation
temperature TJ~~ 0.5. Whe~ ~/Tt = O.@, the heat-transfer coeffi-

cients from the two sets of solutions for a cy~nder differ by 50 to
lW percent depending on the temperature level and yaw parameter.

The values of the heat-transfer parameter at the stagnation point
on a body of revolution obtained by the present method with the Sutherland
viscosity-temperature relation and a Prandtl number of 0.7 are in close
agreement with the corresponding results of Fay and Ridden for a real

-- gas. This close agreement indicates that the’heat-transfer rates at the

.
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stagnation point of a bcdy of revolution or at the stagnation line of a
yawed cylinder in a real-gas flow at equilibrium dissociation may be cal-
culated by using the Sutherland viscosity-temperature relation, the “

perfect-gas equation, and constant specific heat in the solution of the
boundary-layer equations. The flow variables appearing in the final
expression for the heat rate must be evaluated at the real-gas conditions.

The effects of pressure gradient on the heat-transfer and skin-
friction parameters become larger as the yaw parameter ~d”tilJ- t&pera-
ture are increased. Calcuktions for an adverse pressure gradient indi-
cate that at sufficiently large values of the stream Wch number the
separation line of the chordwise flow would move forward as the yaw angle
is increased.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,

Langley Field, Vs., June ~, 1958.
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APPENDIX A

DERIVATION Cl?SIMPLIFIED BOUNDARY-lJWER EQUATIONS

The equations solved in the present report are essentially the ssme
as the equations of reference 21.except for the boundary condition on the
normal velocity at the wall and the assumption used for the viscosi@-
temperature relation. The normal velocity at the wall is herein assigned
a finite value to simulate a porous wall. The inJected gas is therefore
assumed to be the same as the gas in the boundary layer; that is, the equa-
tions apply only for a homogeneous gas throughout. Numerical solutions to
the present equations are obtained for both a linear viscosity-temperature
relation of the form

and for Sutherland’s relation

●

In
< Tw

both equations

from the best

(Al) and (A2), ~ would be

viscosity data available.

—

(Al)

(A2)

evaluated as a function of

Since the basic equations for the compressible boundary layer on
the infinite cylinder in yaw are given elsewhere (for example, ref. 21)
they are not repeated herein. The assumptions and restric~ions used ~
obtain the following equations are

(1)

(2)

(3)

(4)

Prandtl boundary-layer equations for the steady flow of a homo-
geneous gas

Perfect gas law

Constant

Cylinder

P = PRT

specific heat and Prandtl nuniber

of infinite length (spanwise derivatives vanish)

(A3)

Introducing the stresm function and the Stewartson transformation in the
same manner as in reference 21 then results in the following system of
equations in the transformed coordinate system XZ:

.
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ChordWise momentum equation:

& a2tf [ -%)6-(1:aJra21f. yJ S!!!2 1
—.— —

azaxaz ax~zz%dx
_tJ.2+%]+ ~t 2$9)

(A4)

. . .
spanwlse mcnnentumequation:

8* ag——-
az ax

Energy equation:

The Stewartson
defined as

and the stream

transformation

x=

z=

u=

av ag ()+$j?!%——=
ax az az az (A5)

S6 1- ( )]]~pra U2 + V2.-— ——
az 1- ~ a2 2%Tt

(A6)

used in eqyations (A4) to (A6) may be

J
‘%~w>ti——
0 %%at

*
J

‘Adz
at o Pt

~
I

dz

function is defined by

-J

The viscosity function @ maybe written as

(A7)
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m

on account of the perfect-gas

bo~dary layer. In general,

r

.

#
-v%
~T

law and the fact that

T may be expressed as

33

(A8)

?P
X=o ‘nawn

1T= Tt(l-~)6 -(l- tJg2 + \ - ~ $($)2

from the definitions of H, e, and g and
energy equation for the external flow. The

A

the use of the adiabatic-
quantity ts depends on the

spanwise velocity and can be written in terms of the stresm
and yaw angle as

Mach number

(A9)

which indicates that ts is simply the ratio of the stagnation tempera-
ture of the flow component normal to the cy~nder to the total stagnation
temperature. Note that the yaw parameter ts as defined here is the

reciprocal of the Mach number--yaw-angle parameter used in reference 21.

Similar solutions to the system of equations (A4) to (A6) are
obtained by first assuming that the dimensionless velocity and enthalpy
profiles ‘~”e2 g, and e are functions of a single similarity varia-

ble q and then determining the additional conditions required to reduce
the system to ordinary equations (see, for example, ref. 14). The simi-
larity variable is defined as

n (IU+lue=— —2 z
Vtx

and the assumptions for the profiles are

‘==”(”]

(A1O)

(All)
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where Ue = at% =d ~=f’=~” Then, if the external flow is of

the FalJmer-Skan tyye

Ue = C~ (AK?)

the system of eqwtions (A4) to (A6) is reduced to the following form:

*(@f”)+ f“f { -*fi-tw) ’-(’-to)+%]]]]
=p (f’)’

%&3’ +fg’=c)an()

‘(@’) + Nprfei
aq

.*#’ l-e g
ln+ll. ~dx=

({

-Ljil y;
)( )})

W$if ’)’]’ + (1-t, g’ ‘
1-~ h at

where the primes denote differentiation with respect to q, and

(A13)

(A14)

(Q5) -

.

P ~*= The boundary conditions on equations (AI.3)to (A15) are
m+l

now, at q = O,

where ww = O for a nonporous wall and

f’=e=g=o

At q -+u,

f’=e=g=l

For zero aerodynamic heat trsmfer, the wall
tions (A13) to (A15) is replaced by the adiabatic

(A16)

(A17)

(A18)

temperature in eqw-
wall temperature Taw. .

.
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Since Taw is then an additional unlmown, an additional equation

. condition is required in order to evaluate Taw. This additional

tion is

()ae
=0qw

35

or

condi-

(A19)

from the definition of 0. Since ~ and ~ are, in general, fiulc-

tions of X, equations (A13) to (~6) are not yet consistent with the
original assumptions for the profiles as given by eqyations (All). A
consistent set of equations cannot be obtained when tw is a variable

except for incompressible flow (~ =1.0, ts -1.0, ~ <~ ae) for which

~ may take the form (see ref. 9)

q=l+

For compressible flow it is necessary

While the chordwise velocity Ue

AN

to specify that ~ is constant.

must always satisfy equation (A12),
the specific value of this velocity required to make eqyations (A13) to
(A16) consistent with eqyations (All) depends also on the viscosity
assumption and the value of the Frandtl number Npr. For arbitrary

values of @ and ~r, ~- must be either zero (or negligible) or a

constant other than zero. The first termon the right in equation (A15)
snd @ then become functions of ~ only. When ue is constant, ~ = O,

and the equations reduce to the flat-plate case, which is not considered
further herein. At X = 0, Ue = O and the equations describe the flow

at the stagnation point on a body of revolution (where ~ = 0.7 and
ts . 1.0) or at the stagnation line on a cylinder (~ = 1). Equations

(A13) to (A16) then reduce to

{[
(@”)’ + f“f = .j3(f’)a 1}-*(1-tJe-(1-t.)g2+~(MO)

(k’)’ +fg’ =0 (A21)

[1Vw d% -1/2
fw =-w ——

w~dx

(A22)
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with the remaining boundary conditions
(A19). Equations (A20) to (A23) apply

NACA TN 4345

the same as equations (A17) to
approximately when Ue ~< at, ,

which occurs, for example, in the neighborhood of a stag~tion line
where P = 1.0. Small chordwise velocities would also be expected over
the entire cylinder for large yaw angles when the value of P may be
arbitrary. Note that equation (A23) specifies a chordwise distribution
of Ww since fw must be a constant.

In general, when Ue # 0, a consistent set of equations can be

obtained only for the condition of ‘Pr = 1.0 and @= 1.0. The condi-

tion @ = 1.0 is obtained by substituting the linear viscosity relation
givenby equation (D) into equation (A8). The equations (A1.3)to (A15)
then reduce to

e“ +fe’ =0 (A25)

where for these conditions e = g, from the boundary conditions (A16) to
(A19) andeq-tion (A14) with @=l.O. The boundary conditions applying
to equations (A24) and (J@) are the same as equations (A16) to (A18).
Since fw must be a constant, the normal velocity at the wall varies
according to

or in terms of the transformed coordinate

.

(A%)
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INTEGRAL EQUATIONSIN TRANSFORMEDHAMiZ

A large group of a~proximate methods for calculating laminar-
boundsry-layer characteristics are based on the integral equations
which are obtained by integrating the partial differential eqwtions
across the boundary layer normal to the wall. After suitable assump-
tions are made for the velocity and temperature profiles, the problem
is thereby reduced to the solution of a set of ordinary differential
equations. Even though the original boundary-layer equations are satis-
fied only on the average, these methods are usually considered to be
sufficiently accurate for practical purposes. (For a general review of
integral methods, see ref. 26.)

Some of the “piecewise” methods (for example, ref. 1) which use
basic information from the similar solutions are also found to satisfy
the integral momentum or energy equations.

In the application of integral methods to the compressible boundary
layer, substantial simplifications are obtained by transforming to the
XZ-pl.ane. The velocities in this plane are defined in terms of the
stream function $ as

u=

w=

so that the continuity equation is

(Bl)

(B2)

Substituting equations (Bl) into equations (A4) to (A6) of appendix A
yields
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(B4)

where the adiabatic-energy equation for the external flow has been used
in the last term of equation (A6). The boundary conditions for equa-
tions (B2) to (B5) are, a. Z = O,

u=e=g=o (B6)

‘=%? (B7)

where Ww = O for a nonporous wall; and, a. Z +=,

u = Ue (B8)

g=e=l (B9)

The conventional boundary-layer assumptions also require that all
derivatives of U, g, and 0 become negligible for large values of Z.
For zero heat transfer the additional condition (&J/bZ)w = O is used
to determine the adiabatic wall temperature Taw. Combining equa-

tions (B2) and (B3) and integrating from Z = O to 00 with boundary
conditions (B6) to (B9) then yield

.

.
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Equations (B2) and (B4) can be combined in the same manner to give

Similarity, eqpations (B2)and (B5) yield

The integral-thickness

e*

6*

parameters are defined as follows:

= J’om&$).

=J’om[+

(B12)

(B13)

Substitution of these parameters into equations (B1O) to (B12) then gives
the final form of the integral eqyations as
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@+

{
[ - %).+ (%- .).*]} =j&:) w+*

ldue 2f3*+5*+ *(l——
dx u= dx

(B14)

dE ()Edue=& +%.—
—+ueax ~ ~ lJfJdx

(1 dUe‘e+e —— -E Ue dx i%*)=&W+%

(B15)

(B16)

The normal velocity at the wall in the transformed plane is related
to the corresponding velocity in the physical plane by the relation

ww=&&?w

from equations (A7) and the definitions of U and ‘W.
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.

UNIQUENESS OF SOLUTIONS FOR NEGATIVE VALUES OF j3

In order to discuss the uniqueness problm for negative values of
~ (see refs. 4, 5, and 14) it is useful to consider the asymptotic
solutions to egyations (A24) and (A25). These eqyations apply for
@ = 1.0 and N& = 1.0 and are as follows:

ftll+ fflf
{[

=p (f’)? 1}&(l-~)e-(1-tJe2+q (cl)
s

el’ +fe’ sO (C2)

The boundary conditions are, at q = O,

f fw= (c~)

f’=e=o (C4)

and, at q +-,

f’=e=l.o (C5)

The functions f’ and EJ may be mitten as

\
f’ =1-?1

e 1-=
.

where, at large values of TI, ? and
of boundary conditions (C3) to (C5).
eqmt~ons (Cl) and (C2)and retaining
and e result in the equtions

(c6)

~ are small quantities because
Substituting equations (c6) into
only the linear terms in ?

(CT)

(c8)6“ + f6’ = o
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which are valid only at large values of q. ‘l%eboundary conditions
for ~ ~rn are now

;=0

6=0

The function f may be written by definition as

.

.

which, frm eqpations (c6), becomes

f =fe+
J’

7(1 - ?!)dq

7e

I

m
If the qwntity ~ d~ is assumed to be negligible, the asymptotic

%
expression for f is ,

f =fe+?p~ (C9) ●

Introducing the variable ~ defined as .

(Clo)

and substituting equation (C9) into equations (C7) and (c8) then result
in

The required solution to equation (C12) is

(cIi)

(c12)
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since from eqwtion (C1O) ~e = fe. For large values of ~ this rela-

tion maybe expressed as (se: ref. 27)

Thus at q = qe, where qe is such that (C9)

(C13)

is satisfied, the asymptotic

solution for e .asgivenby equation (C13) requires that

ee=l-$
e

approximately

(C14)

which may be verified for ~ = 1.0 from the tabulated results for
Npr = 1.0 in reference 21.

Substituting equation (C13) into equation (Cll) results in the
linear differential equation

d2? -
+i%a~~=

‘(*- +e~ ‘(f:+2)
(C15]

~ dq

A particular integral of this equation valid for large values of ~ is

-$f12
?=A~ (c16)

t

where, by substitution in equation (C15),

(C17)

The general solution to the homogeneous part of equation (C15) for large
values of q is (see ref. 4)

?=
2p

J2P+:) *fi~
+KTj (c18)

n e

where for j3> 0, K = O in order to satisfy the boundary condl-
tion?=Oforq+ CO.

— ———



44 NACA

For ~ K O this boundary condition can be satisfied with
finite value of K and the general solution to eqwtion (C15)

which is valid only for large values of fi and P K O. Since

TN 4345

*

then .

(C19)

equa-
tion (C19) is a solution for any value of K, further restrictions must
be imposed before a unique solution can be obtained. Hartree (ref. 4)
sets K = O for reasons of continuity and consistency with the ~> O
case. Cohen and Reshotko (ref. 14) state further that for 13K O it
is necessary to set K = O-
For K = O the constant B
ated at ~ = ~e. The final
be written as

f’ [(‘l-*+1-

to avoid infinite displacement thickness.
may be obtained from equation (C19) evalu-
asymptotic forms for f’ and 6 may then

=w+(?rl-f:-(’+i ii]
.

,

e =’-*Y

(cm)

(c21)

Equations (C20) and (C21) are now unique solutions for all values of j3,
and a study of their properties for ~< O maybe used as a guide to
obtain by numerical’methods the corresponding unique solutions of the
original nonlinear differential equations (A24) and (A25).

For purposes of comparison, consider first the cases for B > 0
and ~ = O. For ~> O the first term in the braces of equation (C20)
dcminates so that for very large values of ~ there remains approxhately

f’l=l- (&l
L(-Lfe2) ij

ez n

Hence for e; > 0, f’ -1 frcanabove or

1 + ~ is ~eater
2t8

or less than 1.0. All

below according to whether

nwnerical solutions (whether

.

.

.
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unique or not) obtained in the present investigation for ~r = 1.0

show that 0~ 2 0 for both negative and positive values of ~. The

asymptotic solutions for ~ = 1.0 are discussed in detail in refer-
ence 21.

For @ = 0, equation (C20) reduces to

which shows that for f; K 1.0, f! +1 from

f;
)

below.

For ~ K 0, the second term in the braces of
so that for very large values of ij

equation (C!20]dominates

which shows that f’ +1.0 from

L

below if

This inequality would always be satisfied for e:

1+~>
2ts =

whichis
l+tw

2ts =

velocity

?11+ e:— —
2ts ‘e

-1

(C22)

>0 and f~Cl if

1. On the other hand f’ +1.0 from above if

(l- fJ.(l-*):

as welJ as alJ boun&y conditions, is

(C23)

and f;>l if

unique solution is possible when

1+ %~< I..O and equation (C21-),
2--

also satisfied. (The situation
for negative values “of-~, or adverse pressure gradient,’is the exact
opposite of that at positive values of ~, or favorable pressure gradient,

where velocity overshoot occurred for +X > 1.0.) ~ the present

—
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solutions

i~ 0.8> a

for negative values

value corresponding

of ~ the

to tw=o

smalJest value

and A = 1.6.

N4CATN4343

l+%X
‘f 7r-
(Solutions for

A= 1.0 are given in ref. 14.) If”-avalid solution with velocity over-
shoot is poss~ble, it would be-expected for these values of tw &d A.

A series of solutions were then obtained for ~ = 0, A = 1.6, and

P = -0.2 for different values of q, say 7*, at which the convergence
procedure as described in reference 21 was applied. Pertinent values
from these solutions are presented in table VI. Examination of the tab-

ulated values Of (1 - f:) and (1.-~ .)%. 0.2 ~ shows tht when

inequality (C23) is satisfied the boundary conditions on f! and e at
large values of q are not satisfied. Furthermore, equation (C21) is
not satisfied since e: always remains positive even when e > 1.0.

The boundary condition on e was not satisfied to a high degree of
accuracy until f: s 1.0 for all values of q whereupon the inequality

(C22) was satisfied at q = 6 and 8. lt is therefore concluded that for
the particular convergence procedure used herein it is not possible to

l+~~<l.osatisfy equations (C20) and (C21) simultaneouslywhen — .

and velocity overshoot occurs. In other words, while equ%ion (c18)
permits a unique solution with velocity overshoot, the required boundary
conditions on El and (3’ cannot be obtained when veloci@ overshoot is
present.

The results shown.in table VI also indicate that increasing V*
from 6.8 to 10.4 resulted in no change in f: and e: and very little

change in any of the tabulated values at cmparable values of q. The
same behavior was noted in several other sets of solutions at different
values of tw, h, and negative $.

In view of the preceding discussion concerning the asymptotic solu-
tion and also because of the tendency for f: and e; to approach con-

stant values as T* is increased, it was assumed that, in general, unique
solutions could be obtained byusing V* =8.0 provided that f’ ~ 1 for

all values of ~ and the boundary conditions at q = 8.o were satisfied
to within 0.00001 on e and f’, and to within 0.00003 on e! and f“.
All final solutions for negative values of ~ as presented in table IV
satisfy these conditions to this degree of accuracy.

.

—
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_ III

BOUNIMRY-LAYERPARAMETERSCA.LCUIATEDFORSTAGNAECONFLOWSBYUS3.N2SUTEESMN!JVISCOSITY-TEMPERATURE

REIA50N AT FRANDTL~ OF0.7WI!lX~NPOROUSWALL

(a) Body of revolution;p .0.5

Ts % 4
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TABIE IV. - Concluded
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(a) Chordwise velocity ratios.

nondimenBiond. velocity and stagnation-enthalpy-difference profiles. g = 1.0;

~=1.O; Npr =0.7; ~= 0.5.
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(b) Spanuise velocity ratios.

Figure 1.- Continued.
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(c) Stagnation-enthalpy-difference ratios.

Figure 1.- Concluded.
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Yaw parameter, A

(a} Variation of heat-transfer parameter with yaw-angle @rameter.

Figure 3.- Effect of yaw angle, stream Mach number, Prandtl number, and
transpiration cooling on heat-transfer coefficient at stagnation line.
@ = 1.0; p = 1.0.
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(b) Variation of ratio of E for transpiration cooling to E for non-
porous wall with yaw-angle parameter.

Figure 3.- Continued.
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(a) Variation of coolant mass flow with yaw angle.

Figure 8.- Typical examples illustrating effect of yaw
number, and viscosity relation on coolant mass flow
tain a constant wall temperature.
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